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Abstract

Motivation:  Recent technological advances such as cDNA microarray technology have

made it possible to simultaneously interrogate thousands of genes in a biological

specimen. A cDNA microarray experiment produces a gene expression “profile”.  Often

interest lies in discovering novel subgroupings, or “clusters”, of specimens based on their

profiles, for example identification of new tumor taxonomies. Cluster analysis techniques

such as hierarchical clustering and self-organizing maps have frequently been used for

investigating structure in microarray data.  However, clustering algorithms always detect

clusters, even on random data, and it is easy to misinterpret the results without some

objective measure of the reproducibility of the clusters.   

Results:  We present statistical methods for testing for overall clustering of gene

expression profiles, and we define easily interpretable measures of cluster-specific

reproducibility that facilitate understanding of the clustering structure. We apply these

methods to elucidate structure in cDNA microarray gene expression profiles obtained on

melanoma tumors and on prostate specimens.  

Availability:  Software to implement these methods is contained in BRB ArrayTools

microarray analysis package available from http://linus.nci.nih.gov/BRB-

ArrayTools.html.    

Contact:  lm5h@nih.gov
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Introduction

The cDNA microarray technology allows one to measure, for thousands of genes, the

relative abundance of each gene’s mRNA in a test sample compared to its abundance in a

reference sample using a two-color fluorescent probe hybridization system (Schena et al.,

1995). The gene expression “profiles” generated by this technique can be analyzed by

clustering methods to try to identify novel subgroupings, or “clusters”, of specimens.

Microarray analyses have already been useful in identifying tumor taxonomies (Khan et

al., 1998; Alizadeh et al., 2000; Bittner et al., 2000). Frequently used cluster analysis

techniques include hierarchical clustering (Eisen et al., 1998) and self-organizing maps

(Tamayo et al., 1999).  However, clustering algorithms always detect clusters, even on

random data, and it is imperative to conduct some statistical assessment of the strength of

evidence for any clustering and to examine the reproducibility of individual clusters.

Here we present statistical methods for testing for the existence of meaningful clustering,

and we describe some easily interpretable cluster-specific reproducibility measures that

we have developed and found useful for elucidating the clustering structure.  

We demonstrate the methods by applying them to two different gene expression

profile data sets.  The first data set consists of gene expression profiles for 31 melanoma

tumors (Bittner et al., 2000), and the second data set consists of profiles obtained from 25

prostate specimens (Luo et al., 2001).  The gene expression profile obtained for a

specimen consists of log transformed normalized expression ratios measured on the full

set of genes represented on the microarray.  For a given spot (e.g. gene) on an array, the

expression ratio is formed by dividing the fluorescent signal measured for the test sample

at that spot by the fluorescent signal measured from the reference sample.  The test
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samples are fluorescently tagged cDNA samples derived from mRNA isolated from the

tumors or other specimens of interest.  In the examples we will consider, the reference

sample is derived from a common pool of mRNA and tagged with a fluorescent dye

different from the dye used for the test samples.  The reference sample used in the

melanoma example was a pool of RNA from a non-tumorigenic revertant of a

tumorigenic melanoma (Trent, 1990).  The reference sample used in the prostate example

was composed of a pool of RNA from two benign prostatic hyperplasia samples.  In

general, the reference pool may be mRNA derived from normal tissue or a mixture of

mRNA derived from a collection of tumor cell lines.  

Our focus is on hierarchical agglomerative clustering methods, although the same

general principles could be applied to any of the numerous clustering methods available

(Gordon, 1999; Jain and Dubes, 1988).  In brief, a distance metric is defined between the

profiles of each pair of specimens to be clustered. The hierarchical agglomerative

algorithm proceeds by merging the two closest (most similar) specimens first, and then

successively merging specimens or groups of specimens in order of greatest similarity.

Two distance metrics commonly used in clustering gene expression profiles are

Euclidean distance and one minus the Pearson correlation coefficient. Euclidean distance

measures in absolute terms the closeness of two profiles, whereas correlation measures

the similarity of patterns in the sense of how closely the values in one profile can be

approximated by a linear function (scalar multiple or shift) of the values in the other

profile.  For example, if the expression ratio measurements for all genes for one tumor

were exactly 3 times their counterpart ratios for another tumor, those two tumors would

be considered distant using a Euclidean distance metric but close using the distance
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metric of one minus the correlation.  See Gordon (1999, chapter 2) for discussion of

additional distance metrics.  

The end result of a hierarchical clustering is a tree structure depicted by a

dendrogram. An example dendrogram is presented in Figure 1a.  The dendrogram in

Figure 1a resulted from hierarchical cluster analysis, using the distance metric of one

minus the Pearson correlation coefficient, applied to log expression ratios obtained from

microarray experiments performed on 31 melanoma tumors (Bittner et al., 2000). There

were 3799 genes with measurements meeting the quality criteria used in these analyses.

At the bottom of the tree, each of the original specimens constitutes its own cluster and,

at the top of the tree, all specimens have been merged into a single cluster. The tree is

“rooted” at the top.  Mergers between two specimens, or between two clusters of

specimens, are represented by horizontal lines connecting them in the dendrogram. The

height of each horizontal line represents the distance between the two groups it merges.

See Gordon (1999, pp. 69-72) for a discussion of alternative dendrogram formats.  

It is not obvious by looking at the dendrogram in Figure 1a what are the most

meaningful clusters. Stopping the agglomerative process too early will result in a large

number of small clusters. Allowing agglomeration to continue too long will result in

fewer, larger clusters, potentially obscuring important structure or subgroups. The

decision about where to stop the process is equivalent to where to “cut” the dendrogram.

In viewing this dendrogram or the results from any other clustering technique applied to

any other data, one must ask whether any of the observed clusters are believable, and if

so, which ones. 
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As a first step in the investigation of the clustering structure, we recommend that

a global test of clustering be performed to determine the strength of evidence for any

clustering.  It is expected a priori that expression profiles for genes would cluster

because, for example, there are classes of genes known to be co-regulated.  In contrast,

clustering of an arbitrarily selected set of specimen profiles is not necessarily expected.

The finding of clusters of expression profiles for specimens of morphologically and

histologically similar tumors is a potentially important observation, but one which

requires statistical verification.  If the significance tests provide substantial evidence for

clustering, we employ two cluster reproducibility measures that can aid in assessing the

meaningfulness of individual clusters of interest. The first measure we refer to as the

robustness (R) index, and the second measure we call the discrepancy (D) index. The

fundamental idea behind both of these methods is to identify clusters likely to be

preserved if new data were collected on the same specimens. In effect, we want to assess

the stability of the observed clusters in the background of experimental noise.  Details of

the methods are described in the next section.  

Methods

Global statistical test of clustering

We test whether the gene expression profiles are consistent with having arisen from a

single multivariate Gaussian distribution, i.e., that there is no meaningful clustering.  The

test we propose is based on examination of the Euclidean distances between specimens in

principal components space.  If the distance metric of interest is one minus the Pearson

correlation, the test should be applied to the standardized expression profiles.  Converting

the problem to one involving Euclidean distances allows us to use methods based on
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inter-event distances that have been derived and studied in the context of Euclidean

distance (Diggle, 1983, section 2.2).  This conversion is justified because the one minus

Pearson correlation distance metric is proportional to the square of the Euclidean distance

metric computed on the standardized expression profiles.  The standardization is applied

by mean centering and standard deviation scaling the expression levels of each specimen

prior to applying the principal components transformation.  

The test can be described as follows.  The log ratio or standardized log ratio

profile data are first transformed to the principal components space (Johnson and

Wichern, 1988) to simplify subsequent calculations by adjusting for the effects of

correlations among genes.  The maximum number of principal components that can be

calculated is the smaller of the number of genes and one less than the number of

specimens.  Typically in microarray studies the number of genes assessed far outnumbers

the number of specimens analyzed, so this maximum would be one less than the number

of specimens.   We base our test on only the first three principal components.  This is to

avoid data sparseness in the high dimensional space that would lead to instability in the

properties of the test.  We found through a variety of simulation studies that using three

principal components led to tests with good properties.  We expect that many important

clustering patterns could be detected with examination of only a few principal

components, and this tends to makes the results of the test consistent with the three-

dimensional principal components visualization commonly used for microarray data.  In

a related context, Silverman (1986, pp. 93-94) has recommended that one could

reasonably perform nonparametric density estimation with a few dozen to several dozen

observations of two- or three-dimensional data.  However, a few hundred to several
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hundred observations would be required for adequate density estimation for four- or five-

dimensional data.  Therefore, detecting statistically significant clustering in high

dimensions would likely require profiling greater numbers (many hundreds or even

thousands) of specimens than is common.  

If the profile data have an approximate Gaussian distribution, then the principal

components will also have approximate Gaussian distributions.  The global test we

consider compares the distribution of nearest neighbor distances for the observed data in

the space formed by the first three principal components to the distribution of nearest

neighbor distances simulated under a Gaussian distribution (corresponding to the null

hypothesis) in that space.  We compute the mean and standard deviation for each of the

coordinates in the three-dimensional principal components space.  We generate each

coordinate of the simulated data as normally distributed with mean and standard

deviation as estimated from the observed principal components.  The ability to generate

the points in the principal components space one coordinate at a time is a by-product of

the orthogonality of the principal components.  A collection of many Gaussian data sets

is generated in this way.  

To quantify the clustering pattern in the real and simulated data sets, we examine

the distribution of “nearest neighbor” (NN) distances.  For each specimen represented as

a point in the three-dimensional principal components space, we compute the Euclidean

distance from that specimen to the nearest other specimen.  We then compute the

empirical distribution function (EDF) of these distances.  For any distance d, the EDF is

the proportion of NN distances that are less than or equal to d.   We compare the nearest

neighbor empirical distribution function (NN EDF) for the observed data to that expected
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under the null hypothesis, and we quantify the difference by a squared difference

discrepancy measure (Diggle, 1983, equation 2.3.2).  Specifically, let )(ˆ
1 yG be the NN

EDF computed from the observed data, and let siyGi ,,2:)(ˆ K=  be the NN EDF’s

computed from the s-1 data sets simulated under the null distribution (distribution

corresponding to the null hypothesis).  Calculate )(ˆ)1()( 1 yGsyG
ij

ji ∑−=
≠

− to serve as an

estimate of the expected NN EDF under the null distribution that is independent of the i th

simulated EDF.  The squared difference discrepancy measure

dyyGyGu iii
2)}()(ˆ{ −∫= is a measure of how different the ith  NN EDF is from that

expected under the null distribution.  We compute this integral numerically by evaluating

the integrand at 30 equally spaced points along the range of the nearest-neighbor

distances and computing the Riemann sum.  If 1u  is unusually large compared to the

distribution of the s−1 iu  values that were generated under the null distribution, then

there is evidence that the observed data were generated under a distribution different than

that null distribution.  The Monte Carlo p-value for a test of clustering (relative to the

expected NN distance pattern under the null distribution) is obtained as the proportion of

the s iu  values that are at least as big as that computed from the observed data.

Typically, we take s = 10000 in order to obtain a high degree of accuracy on the Monte

Carlo p-value.  For example, if 3% of the s iu  values are at least as large as 1u  (which is

calculated from the observed data), the calculated Monte Carlo p-value would be 0.03.

The Monte Carlo p-value is interpreted as any other p-value, so small values such as

values less than 0.05 are commonly called significant.  
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Calculation of the R-index and D-index

For assessing cluster-specific reproducibility, we utilize the general approach of

data perturbation to assess clustering stability, a technique that has been used by others in

different settings (Rand, 1971; Gnanadesikan et al., 1977; Fowlkes and Mallows, 1983).

We simulate “new data” by adding artificial experimental error in the form of Gaussian

white noise to the existing log ratio measurements. Error distributions other than

Gaussian could be used, but the Gaussian error assumption is a useful approximation in

many settings.  Wolfinger et al. (2001) have reported that they have found Gaussian

assumptions to be reasonable for several data sets they examined.  In practice, one can

check assumptions of Gaussian error on replicate data sets using statistical tests for

normality, assessing skewness and kurtosis, and examining graphical displays such as

normal quantile-quantile plots.  An appropriate variance to use in generating this

Gaussian experimental error can be estimated from the data.  Our estimate is based on an

assumption that a majority of the genes are not truly differentially expressed across

tumors. Any differences observed in non-differentially expressed genes would be due to

experimental noise. We calculate the variance of the log ratio across experiments for each

gene in the data set and use the median (50th percentile) of the observed distribution of

variances as the experimental variance estimate. The median should be robust to

contamination by modest numbers of large standard deviation estimates that reflect true

tumor-to-tumor differences rather than experimental noise. A lower percentile such as

10th or 25th may be a good choice if larger numbers of differentially expressed genes are

expected. 
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The result is a new set of “perturbed” data. We then re-cluster the perturbed data

and compute our indices to measure how much the clustering has changed.  We repeat

the perturbation-clustering cycle numerous times and estimate the stability of the original

clustering to data perturbations.  Our R-index measures the proportion of pairs of

specimens within a cluster for which the members of the pair remain together in the re-

clustered perturbed data.  Our D-index measures the number of discrepancies (additions

or omissions) comparing an original cluster to a best-matching cluster in the re-clustered

perturbed data.    

Consider calculation of the R-index for the set of k clusters resulting from a cut of

a dendrogram. We perturb the data by adding to the log ratio measurements independent,

normally distributed random numbers with mean zero and variance equal to the estimated

experimental noise variance. After perturbing, the data is re-clustered to obtain k clusters.

If a cluster i of the original data contains ni specimens, it can be viewed as containing mi

= ni(ni – 1)/2 pairs of specimens.  If the clusters are robust, then members of a pair should

fall in the same cluster in the re-clustered data.  Let ci denote the number of these mi pairs

with members falling in the same cluster in the re-clustered perturbed data.  Then ri =

ci/mi is a measure of the robustness of the ith cluster in the original data set.  An overall

measure for the set of k clusters is R = (c1 + c2 + . . . + ck)/(m1 + m2 + . . . + mk).  Note

that this overall measure is a weighted average of the cluster-specific measures, weighted

by cluster size.  In computing the overall measure, we exclude singleton clusters in the

original data.  The robustness indices can be averaged over a large number of cycles of

perturbations and re-clusterings. For a singleton cluster in the original data, it can be
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informative to record the proportion of times it remains a singleton as opposed to being

merged into another cluster in the perturbed data.

The D-index is computed somewhat differently.  For each cluster of the original

data, determine the cluster of the perturbed data that is the “best match”, defined as the

one having the greatest number of elements in common with the original cluster.  (Ties

are broken by choosing the match with the least number of added elements.)  The

discrepancy can be subdivided into one of two types - either specimens in the original

cluster that are not in the best match perturbed cluster (omissions), or elements in the best

match cluster that were not in the original cluster (additions).  It can be helpful to keep

track of these two types separately, and this is one potential advantage of the D-index

compared to the R-index.  An overall measure of discrepancy is the summation of cluster-

specific discrepancy indices.  These indices can also be averaged over a large number of

cycles of perturbations and re-clusterings.  In computing the discrepancy index, we have

found it useful to consider cuts of the perturbed data tree with similar, in addition to

identical, numbers of clusters as in the original data, and to report the D-index as the

minimum over the several cuts considered.  

Results

We first applied these cluster assessment methods to the melanoma data of Bittner et al.

(2000) described previously.  For the global test of clustering, we obtained a p-value of

0.003.  Figure 2 shows the observed NN EDF (nearest neighbor empirical distribution

function) plotted versus that expected under the Gaussian null distribution.  Our observed

data exhibit a significant excess of small NN distances compared to a single multivariate
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Gaussian distribution.  We interpret this as evidence of clustering pattern, and we

proceed with examination of cluster-specific reproducibilities.   

For examination of individual clusters, we computed the robustness and

discrepancy indices.  Of particular interest to Bittner et al. (2000) was the 19-member

cluster containing tumors 6-24 as shown in the dashed box in Figure 1a. That group of 19

tumors occurs as a stand-alone cluster at cuts of 8, 9 and 10 clusters. The estimated

experimental noise standard deviation (square root of median estimated variance)

estimate was 0.16 (log base 10 scale) for this data. Table 1 presents cluster-specific

reproducibility measures for clusters formed at cuts of 7 and 8 clusters. Cutting the tree at

7, we see that the cluster with elements 5-24 (composed of Bittner et al.’s major cluster

and one additional tumor) is highly reproducible. With the exception of the cluster

containing tumors 2 and 3, all of the other individual clusters formed at this cut of the

tree are reproducible (robustness > .90).  Cutting the tree at 8 clusters, the cluster

containing tumors 2 and 3 continues to have very poor reproducibility (robustness =

.001).  Furthermore, it is evident that, on average, there is an addition of one member to

the collection 6-24.  The observation of a large average number of additions (17) to the

singleton cluster containing tumor 5, along with inspection of several of the perturbed

data trees (not shown), reveals that tumor 5 is frequently merged with tumors 6-24 when

cutting to obtain 8 clusters. Thus, there appears to be strong evidence for reproducibility

of a large cluster containing tumors 5-24. These results support Bittner et al.’s

identification of subsets of melanoma within the data set, though they suggest a minor

refinement with tumor 5 being included in the major cluster of non-invasive melanomas

(Bittner et al., 2000). 
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The second data set to which we applied our cluster assessment methods is that of

Luo et al. (2001) which consists of gene expression profiles obtained from 25 prostate

specimens, 16 of which were prostate cancer and 9 of which were benign prostatic

hyperplasia (BPH).  These prostate expression profiles were obtained using cDNA

microarrays consisting of 6500 human genes.  Quality scores were provided for each log

ratio measurement, with a score of zero indicating that the log ratio was deemed

unreliable and should not be used.  We did not include in the analysis any genes having

quality scores of zero in more than 7 of the 25 specimens. This left 2817 genes for

analysis.  Then, we imputed any remaining missing values using a k-nearest neighbors

algorithm (KNNimpute, Troyanskaya et al., 2001): a missing log-ratio for gene j in

specimen i was imputed with a weighted average of log ratios from 10 other genes in

specimen i, where the 10 genes used were those whose expression profiles across

specimens were closest (in Euclidean distance) to the profile of gene j, and the inverse

Euclidean distance was used as the weight in averaging.

Figure 1b presents the dendrogram for the prostate data.  Applying the global test,

we find evidence that these expression profiles do not arise from a single Gaussian

distribution (p = 0.037).  Figure 3 shows the observed NN EDF plotted versus that

expected under the Gaussian null distribution.  Our observed data exhibits an excess of

small NN distances compared to a single multivariate Gaussian distribution.  

Table 2 presents cluster-specific reproducibility measures for clusters formed at

cuts of 2, 3, and 4 clusters (reproducibility continues to deteriorate for larger numbers of

clusters). The estimated experimental noise standard deviation (log 10 scale) for this data

was 0.13.  Cutting the tree at 3, we see that all clusters are highly reproducible, including
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the singleton cluster containing specimen #16.  Specimens 1-16 were the 16 prostate

cancer specimens, and specimens 17-25 were all benign prostatic hyperplasia (BPH)

specimens.  Cutting the tree at four clusters, the discrepancies begin to increase,

suggesting that any claims based on this data that there are two subtypes of prostate

cancer would not be strongly supported by this data set.  Our reproducibility assessment

supports the conclusions of Luo et al. (2001) that the prostate cancers appear biologically

distinct from the BPH specimens, but it also directs attention to the possibility that there

is something unique about cancer specimen #16.  We were not able to identify any

obvious data quality problems with this array (such as an unusually large number of bad

spots) that might explain this finding.  Further investigation would be needed to

determine if this specimen has any particular biological significance.  

Discussion

We have suggested a two-step approach to the evaluation of sample clustering.  First we

perform a global test for clustering, and if pattern is suggested, we follow with

examination of cluster-specific reproducibilities.  We have assessed the global test by

simulation under a variety of situations.  We generated data from multivariate Gaussian

distributions in the original high-dimensional gene space using a variety of covariance

matrices and means, and we found that the percent of test rejections was consistent with

the nominal .05 level or less.  Also, the test had good power in the several multiple

cluster situations we examined unless the clusters were very close to one another, were

extremely elongated, or contained very few members.  Even under a few non-Gaussian

multiple cluster situations we examined, the test maintained good properties.  We

speculate that this robustness may be due to the fact that even somewhat non-Gaussian



May 14, 2002

16

data may appear approximately Gaussian in the principal components space because the

principal components are formed by taking linear combinations over a very large number

of genes.  The global test can be sensitive to outliers, but one should be able to identify

these situations by following up with the cluster specific reproducibility assessment, and

such outliers may be of interest in their own right.  We emphasize that the cluster-specific

reproducibility assessment is an important step in the interpretation process.  

A number of methods have been proposed for detecting the “optimal” number of

clusters.  Milligan and Cooper (1985) provide an extensive review and comparison of

methods.  Tibshirani et al. (2001) has proposed the “gap” statistic for estimating an

optimal number of clusters.  The optimal number of clusters is chosen where the gap

function shows a drop of larger than one standard deviation, where the standard deviation

is determined by Monte Carlo simulation under a uniform null distribution.  It is not

designed to control the probability of falsely declaring the presence of multiple clusters.

In contrast, we take a hypothesis testing approach based on the difference between the

observed nearest neighbor distribution and that expected under two different null

distributions.  We generate the null distribution of the test statistic and do not rely on use

of a standard deviation.  Our tests are not directed at estimating the number of clusters,

and so the methods are complementary.  Yeung et al. (2001) propose a jackknife-type

approach in which they successively leave out experimental conditions (arrays) to

compute a figure-of-merit function that they plot to estimate an optimal number of

clusters.  Their particular interest was in clustering genes and they relied on the

independence of the experimental conditions for justification of their jackknife approach.

It is not clear if their method can be applied to clustering specimens, as it is not
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reasonable to assume that genes are independent.  Golub et al. (1999) suggest a cross-

validation method for assessing clustering results that involves building a predictor for

the observed clusters and qualitatively assessing whether the predictor provides a high

probability of an array being a member of one cluster or another.  This appears to provide

useful information when used for classifying a new set of expression profiles.  Without

an independent data set, however, it may be problematic.  With thousands of candidate

predictors, it may be possible to develop a predictor that appears to clearly distinguish

among even random clusters.  Ben-Dor et al. (2001) have developed a computationally

intensive method for finding clusters and have proposed measures for assessing the

strength of the results obtained from their clustering procedure.  The utility of their

measures in the context of other clustering algorithms is not yet established, however.

Kerr and Churchill (2001) recently proposed the use of an index equivalent to our overall

R-index, but they generated experimental error perturbations by bootstrapping residuals

obtained from an ANOVA model.  Their methods require replicate profile measurements

from at least some specimens.  Replicates were not available in the data sets we

considered.  Also, the type of replicates available must be consistent with the totality of

sources of experimental error that one wishes to account for in the reproducibility

assessment.   In our experience with microarray data, when replicates are available they

often incorporate only some sources of the total experimental variation, for example

hybridization of a single sample to the multiple arrays, but not replication at the level of

resampling a tumor or re-isolating mRNA.  In settings where appropriate replicates are

available, bootstrap resampling could be readily incorporated into all of our cluster

reproducibility assessment methods.  
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We feel that the more detailed reproducibility assessment methods we present

here have several distinct advantages for interpreting the results of clustering biological

specimens (e.g., tumors) on the basis of microarray data. First, the measures here have

natural interpretations: robustness measured by proportion of preserved pairings, or

discrepancy measured by numbers of additions or omissions. Second, the ability to

examine cluster-specific reproducibility greatly enhances understanding of the structure

of the data. This was clearly seen in the melanoma data example.  Had only measures for

determining “optimal” numbers of clusters been applied, they would likely have lacked

sensitivity to shifting around of a few tumors, for example splitting of tumors 2 and 3 and

cleaving of tumor 5 from the 5-24 cluster.  Our cluster specific reproducibility measures

very clearly indicated what was going on.  

There are several other examples of situations in which ability to examine cluster-

specific reproducibility will be important.  Suppose a set of profiles fell into three distinct

clusters, each of which could be further separated into two subclusters.  The mindset of

an “optimal” number of clusters encourages one to choose three or six clusters when in

fact, the appropriate conclusion would be that there is multi-level structure in the data.

This multi-level structure would be elucidated by examination of cluster-specific

reproducibilities at multiple cuts of the tree.  Another interesting example is one in which

there is a single very tight cluster that is surrounded by, but separated from, many “noise”

elements.  Any method searching for an optimal number of clusters would have difficulty

because clustering of the noise points would be essentially random and lacking in

reproducibility, hence obscuring the fact that there was a tight, reproducible cluster in the

middle.  A method searching for an optimal number of clusters would likely conclude
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that there is one cluster, but this could not be distinguished from the situation of “no

clusters”.  Applying the cluster specific reproducibility measures to this situation, one

would find the tight cluster emerging as cuts of the tree corresponding to higher numbers

of clusters are considered.  

In summary, we feel it is important that objective measures be used to interpret

patterns of clustering and assess the reproducibility.  Although relating observed clusters

to known biology is one way to “validate” observed clusters, a great hope in conducting

microarray studies is that new biological features will be uncovered.  Application of

objective measures such as the ones we have described here should help to distinguish

novel and potentially important biological findings from spurious findings.  
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Table 1.  Cluster-specific reproducibility measures for the melanoma dataa 

Cut at 7 clusters R-index = .993, D-index = 1.421b

Cluster Tumor members Robustnessc Omissions Additions

1 1 .927 .000 .000

2 2-3 .121 .863 .000

3 4 1.00 .000 .000

4 5-24 1.00 .000 .013

5 25 .997 .000 .000

6 26-27 .984 .016 .180

7 28-31 .911 .248 .101

Cut at 8 clusters R-index = .991, D-index = 19.590

Cluster Tumor members Robustness Omissions Additions

1 1 .999 .000 .001

2 2-3 .001 .894 .001

3 4 .968 .000 .000

4 5 .000 .000 17.29

5 6-24 1.00 .001 .910

6 25 1.00 .000 .000

7 26-27 .966 .064 .011

8 28-31 .902 .411 .003
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a A hierarchical agglomerative clustering algorithm using average linkage and distance

metric equal to one minus the Pearson correlation was applied.  One thousand simulated

perturbed data sets were generated using a noise SD = .16. 

b The D-index, omissions, and additions computed here allow searching over numbers of

clusters in the perturbed data ranging from two less to two more than the number of

clusters considered in the original data.  

c The reported robustness measure for a singleton cluster is the proportion of perturbed

data clusterings for which it remained a singleton in the perturbed data clustering.  
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Table 2.  Cluster-specific reproducibility measures for the prostate dataa 

Cut at 2 clusters R-index = .946, D-index = 2.621b

Cluster Tumor members Robustnessc Omissions Additions

1 1-16 .938 .520 .574

2 17-25 .973 .198 1.329

Cut at 3 clusters R-index = .984, D-index = 2.589

Cluster Tumor members Robustness Omissions Additions

1 1-15 1.00 .098 .719

2 16 1.00 .000 .000

3 17-25 .938 .236 1.536

Cut at 4 clusters R-index = .923, D-index = 2.939

Cluster Tumor members Robustness Omissions Additions

1 1-7, 10, 11, 13-15 .905 .698 .461

2 8, 9, 12 .899 .182 .635

3 16 1.00 .000 .000

4 17-25 .958 .286 .677

a A hierarchical agglomerative clustering algorithm using complete linkage with

Euclidean distance was applied.  One thousand simulated perturbed data sets were

generated using a noise SD = .13. 
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b The D-index, omissions, and additions computed here allow searching over numbers of

clusters in the perturbed data ranging from two less to two more than the number of

clusters considered in the original data.  

c The reported robustness measure for a singleton cluster is the proportion of perturbed

data clusterings for which it remained a singleton in the perturbed data clustering.  
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Figure 1  a Dendrogram resulting from hierarchical agglomerative cluster analysis using

average linkage and distance metric equal to one minus the Pearson correlation applied to

melanoma data.  Dashed box outlines the 19 tumor cluster of interest.  b Dendrogram

resulting from hierarchical agglomerative cluster analysis using complete linkage and

Euclidean distance applied to prostate data.    
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Figure 2  Empirical distribution function (EDF) of observed nearest-neighbor (NN)

distances for the melanoma data in three-dimensional principal components space

compared to that expected under a Gaussian null distribution.  Horizontal axis represents

the expected value of the EDF under the null distribution, and the vertical axis represents

the observed NN EDF.  The 45 degree line represents perfect agreement with the NN

EDF expected under the null distribution.  The step function drawn with a heavy solid

line is the EDF for the observed data. 
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Figure 3  Empirical distribution function (EDF) of observed nearest-neighbor (NN)

distances for the prostate data in three-dimensional principal components space compared

to that expected under a Gaussian null distribution.  Horizontal axis represents the

expected value of the EDF under the null distribution, and the vertical axis represents the

observed NN EDF.  The 45 degree line represents perfect agreement with the NN EDF

expected under the null distribution.  The step function drawn with a heavy solid line is

the EDF for the observed data. 
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